CS109 Section 1 Solutions

Problem 1

Let C be the event that the student knows geometry. Let S be the event that the student solves the first geometry question correctly. Then $P(C)=q, P\left(C^{c}\right)=1-q, P(S \mid C)=p_{1}$, and $P\left(S \mid C^{c}\right)=p_{2}$. The value we need to solve for is $P(C \mid S)$. We use Bayes Rule:

$$
\begin{aligned}
P(C \mid S) & =\frac{P(S \mid C) P(C)}{P(S)} \\
P(C \mid S) & =\frac{P(S \mid C) P(C)}{P(S \mid C) P(C)+P\left(S \mid C^{c}\right) P\left(C^{c}\right)} \\
P(C \mid S) & =\frac{p_{1} q}{p_{1} q+p_{2}(1-q)}
\end{aligned}
$$

Problem 2

Let S be the event the student solves the first question correctly.
$A=$ the event the student is in the Beginner level
$B=$ the event the student is in the Intermediate level
$C=$ the event the student is in the Expert level
$D=$ the event the student is in the Euclid level
Then $P(A)=b_{1}, P(B)=b_{2}, P(C)=b_{3}, P(D)=b_{4}$. And $P(S \mid A)=d_{1}, P(S \mid B)=d_{2}$, $P(S \mid C)=d_{3}, P(S \mid D)=d_{4}$. We want to solve for $P(A \mid S), P(B \mid S), P(C \mid S), P(D \mid S)$. Here we show the example for $P(A \mid S)$. We use Bayes Rule:

$$
\begin{aligned}
P(A \mid S) & =\frac{P(S \mid A) P(A)}{P(S)} \\
P(A \mid S) & =\frac{P(S \mid A) P(A)}{P(S A)+P(S B)+P(S C)+P(S D)} \\
P(A \mid S) & =\frac{P(S \mid A) P(A)}{P(S \mid A) P(A)+P(S \mid B) P(B)+P(S \mid C) P(C)+P(S \mid D) P(D)} \\
P(A \mid S) & =\frac{d_{1} b_{1}}{d_{1} b_{1}+d_{2} b_{2}+d_{3} b_{3}+d_{4} b_{4}}
\end{aligned}
$$

Note that we get the second equation by the law of total probability.

